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A network of phase-coupled oscillators constitutes a system in which excitable 2� phase slips can be
induced by noise. We show that such an excitation in one of the oscillators can be regenerated by subsequent
oscillators and become self-sustained for certain topologies. We focus on the simplest such topology: two
mutually coupled oscillators. Our analysis is bolstered by an experimental confirmation of the phenomenon via
a pair of mutually delay coupled quantum-dot lasers. Both the intensities and phases of the laser outputs were
measured confirming the interpretation.
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The synchronization of two or more oscillators is a topic
of considerable interest in many areas of science with non-
linear dynamics such as multistability, excitability and chaos
readily observed. Networks of coupled oscillators are of
much interest to researchers in different fields. Examples in-
clude models of neural networks �see �1� and references
therein�, Josephson junction arrays �2�, chemical oscillators
�3�, cardiac cells �4�, and Landau damping in plasmas �5�.
�For a detailed review of synchronization in complex net-
works, see �6�.� An important feature that is fundamental to
many systems arising in nature is time delay, due, for ex-
ample, to the finite propagation speed of signals or the finite
time of chemical reactions. Coupled models incorporating
delay have been used to explain phenomena such as the pas-
sage of information through coupled neurons �7� and the
synchronization of crickets chirping �8� and fireflies flashing
�9�. The introduction of delay enriches the set of possible
dynamics for most systems. For example, amplitude death
typically requires many oscillators and various assumptions
regarding the distribution of frequencies but occurs readily
with the introduction of delay even for low numbers of os-
cillators �10�. Time delay is also critical to some systems
such as coupled microwave oscillators and lasers �11� even
for relatively short delays due to the high frequencies in-
volved.

The Kuramoto model �12� in which oscillators are
coupled via their phases is of fundamental significance in
many of these cases. Yeung and Strogatz were the first to
introduce delay in this model �13� and they showed that vari-
ous phenomena arise �such as bistability� which do not occur
in its absence. We consider such a delay model in this work
and describe how an excitable response can be regenerated in
a system because of the combination of delay and mutual
coupling. To experimentally probe these dynamics, we use
another system which involves such delayed coupling and
for which a delayed Kuramoto model can be derived:
namely, a set of mutually coupled semiconductor lasers. Spe-
cifically, we analyze the mutual delay coupling of two quan-
tum dot �QD� semiconductor lasers. These devices have pre-
viously been shown to be very stable in mutually coupled
configurations �14� even for very long delay times. For other
semiconductor lasers, stable synchronization can only be
found for very short delay times with chaos a typical feature
even for short delays �15–17�. As well as increased stability,

QD lasers have been shown to display very different dynam-
ics compared to their quantum well and bulk counterparts in
master-slave configurations �18,19� and when subjected to
external optical feedback �20�. Of interest here is the phe-
nomenon of excitable phase slipping observed in master-
slave systems �18,21�. �The excitable pulses observed with
QD lasers appear to result from the Adler mechanism �22�. In
�23�, excitable pulses not resulting from the Adler mecha-
nism but from phase slips in so-called homoclinic teeth were
predicted.� Of course, it is not only in master-slave systems
of semiconductor lasers that excitability is observed and for a
review of excitability in laser systems see �24�. The introduc-
tion of delayed mutual-coupling suggests that dynamical
events might be “passed on” from one oscillator to another
and that such a phenomenon can occur in systems of mutu-
ally coupled lasers has indeed been demonstrated for the
low-frequency fluctuations �LFF� observed in semiconductor
laser systems involving feedback �16,25�. Outside of laser
physics, Roxin et al. showed �26� that a small world network
of leaky integrate and fire neurons could generate self-
sustained firing if there was a reinjection of the pulse to a
neuron after its refractory time. Our coupled system also has
analogies with a ring of Josephson junctions and a chain of
highly damped pendula coupled via torsional springs, being a
specific example of the more general formal analogy be-
tween systems with delay and spatially extended systems
�27�. Let’s consider the mechanical analog of a chain of
coupled pendula. Suppose first we have an open chain of �an
odd number of� pendula. If the pendulum at one end is ex-
cited into a 2� rotation this motion can be propagated along
the chain �given appropriate torsion� and will be annihilated
at the end of the chain. Similarly, if the pendula at both ends
are excited simultaneously then the two excitations will meet
at the center pendulum and will annihilate each other there.
If the chain is now considered to be infinite, then the excita-
tion can persist indefinitely and it is this case which is of
most relevance for this work where we show that a network
of delay phase-coupled oscillators can display an analogous
behavior. The configuration considered in this work provides
one the most simple topologies in which an excitation is
reinjected after each round trip time, namely, two mutually
coupled oscillators in a ring topology. A long delay between
the oscillators is required to ensure a return to stable action
before reinjection. In fact, multiple excitations per round trip
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can coexist in the system for a long enough delay time. An
experimental analysis of this behavior with semiconductor
lasers has been heretofore restricted because of the need for
short delays. The use of QD lasers however has changed this
situation and such a system may now be realized in the labo-
ratory.

In the first part of this work, we describe the experimental
setup and results. This includes the first demonstration to the
best of our knowledge of Adler-like excitability in mutually
coupled semiconductor lasers and a measurement of the
phase of the electric fields of the lasers when undergoing
regenerative phase slipping. In the second part, we consider a
simple model for two coupled oscillators, which explains
these results and is of physical relevance being a limit of the
more complicated laser rate equations. In the final part, we
describe some of the more complex features associated with
the system with asymmetric coupling and display the multi-
stable nature of the system both theoretically and experimen-
tally.

The experimental set up was as follows. Two single mode
�distributed feedback� quantum dot lasers were selected so as
to have as similar properties as possible �namely, operating
wavelength, threshold current and slope efficiency�. The de-
vices were mounted on temperature controlled stages and
light was collected from both facets by lensed fibers. The
devices were mutually coupled in a ring topology as shown
in the schematic in Fig. 1. Optical circulators ensured a uni-
directional coupling and prevented unwanted effects arising
from feedback. The system was analyzed using an optical
spectrum analyzer, an electrical spectrum analyzer and a 14
GHz real-time digital oscilloscope. Polarization controllers
were used to ensure TE polarized light was injected into both
lasers. When free running, the lasers operated at approxi-
mately 1290 nm and the threshold currents were about 9 mA.
The temperatures of the lasers were stabilized with resolution
better then 0.01 K. The coupling delay between the lasers
was 18.5 ns. The lasers were pumped up to 2.5 times their
threshold currents and they were tuned by temperature. The
coupling strength was estimated to be less than one percent.

Regions of stable frequency locking were observed at all
coupling levels examined with dynamics appearing near the
unlocking boundaries. For the coupling levels here, locking

bands of approximately 2 GHz were obtained and the system
was multistable for certain values of the detuning. Most im-
portantly for this work, intensity pulses such as those in Fig.
2 were observed in the dynamical regions near the unlocking
boundaries. Typically, an intensity pulse in one laser was
followed by a pulse in the other after the delay-time � and
yet another in the first after a round-trip time 2� and so on. It
was possible to have more than one pulse per round trip and
both the creation and death of pulses were observed. Super-
ficially, it would appear that a leader-laggard mechanism is at
play �16� but we believe that the truth may be more compli-
cated as it can be phase perturbations which result in the
initial symmetry breaking and these are not always readily
apparent in the associated intensity time-series. In fact, simu-
lations using instantaneous kicks rather than noise suggest
that the initial perturbation may not even be in the laser
showing the initial slip. A kick in one laser may not initially
result in a full phase slip in the same laser but can cause a
full slip in the second after one or more delay times and this
can then be passed to the original laser after another delay
time.

Examples of the pulsing behavior and phase evolution are
shown in Figs. 2 and 3. The phase was measured via the
Hilbert phase method previously used in a master-slave con-
figuration in �21�. Here, a low linewidth tunable laser is
mixed with the output from one of the lasers. The Hilbert
phase of this signal is given by �bt+� where �b is the fre-
quency difference between the tunable laser and the laser

FIG. 1. �Color online� The experimental setup. The two lasers
are labeled L and R. The circulators work as follows: light input at
port 1 is output at port 2, light input at port 2 is output at port 3, and
light input at port 3 is output at port 1. OSA, ESA, and Osc. are
optical spectrum analyzer, electrical spectrum analyzer and oscillo-
scope, respectively.

(b)(a)

FIG. 2. �Color online� The intensity of the two lasers is shown
in pulsating regimes. �The two signals are separated in average
value to allow ease of view.� In the left, figure pulses in each laser
occur with round-trip time separation 2� while from one laser to the
other are separated by the delay time �. On the right, the intensity of
the two lasers is shown in a regime where there is more than one
pulse per round trip. The pattern is reproduced in each laser with
round-trip time periodicity.

(b)(a)

FIG. 3. �Color online� Experimental phase evolutions of the two
outputs are shown in regions where the intensity was pulsating. In
the figure on the left, both lasers are undergoing full phase slips. In
that on the right, one laser makes +2� rotations while the other
sometimes follows but sometimes makes a small excursion from the
steady state value and returns without performing a full rotation.
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under test and � is the phase of the laser. Thus, knowing the
beat frequency one can find the phase evolution. The pulses
are accompanied by two generic phase-trajectories. Either
the phase changes by 2� �rotations of both +2� and −2�
were possible� and so returns to the same point physically, or
it undergoes a short-lived perturbation from the original
value. The intensity pulse shape is a result of the shape of the
path taken by the electric field phasor. This path is not cir-
cular and so the intensity changes, much as it does in the
case of master-slave configurations. However, it is the phase
which is the important dynamical parameter.

Our system can be modeled as a pair of �Kuramoto�
phase-coupled oscillators. It is of course possible to use the
machinery of laser rate equations but the simple model cap-
tures much of the relevant physics and by restricting matters
to a discussion of the phase only, the applicability to other
systems should be more apparent. Further, the model has
physical relevance being the limit of very weak coupling of
the full model. �See, for example, �15,28�.� The equations are

�̇1 = −
�

2
− b1 sin��1�t� − �2�t − ��� + �2D1�1�t� ,

�̇2 =
�

2
− b2 sin��2�t� − �1�t − ��� + �2D2�2�t� .

Here, �i is the phase of oscillator i, � is the detuning in the
reference frame centered on the average solitary frequency of
the two oscillators, bi describes the coupling strengths and �
is the delay time between the oscillators. In these equations,
t is dimensionless due to a rescaling with respect to the pho-
ton lifetime ��ph� in the lasers. The equations are written as
Langevin equations in order to excite slips from steady
states: the Di are the diffusion constants and the �i�t� are
white Gaussian noise terms satisfying ��i�t��i�t���=��t− t��.
We consider a relatively weak noise level only in this work.
This model generalizes the Adler equation of master-slave
coupling �22� to the case of mutual coupling and has been
examined before to study the locking and unlocking proper-
ties of mutually coupled semiconductor lasers �see, for ex-
ample, �29�� but not noise-induced phenomena, to the best of
our knowledge. To begin with let us restrict ourselves to
symmetric coupling, b1=b2=b. Depending on the sizes of b
and �, different numbers of frequency locked solutions may
exist. For fixed � and an appropriately low b, only one stable
solution exists �born via a saddle-node bifurcation� and cor-
responds to fixed phases for both oscillators �in this particu-
lar frame�. The central feature of Adler excitability then pre-
vails for each individual oscillator: the existence of two fixed
points one of which is stable and one unstable. The unstable
point provides the threshold for the excitable trajectory. If the
phase passes the unstable point, a full rotation results and it
is the sign of the detuning which determines whether the
phase increases or decreases. A positively detuned laser can
only excite a phase slip of −2� and vice versa for a nega-
tively detuned laser. In the mutually coupled system, at each
locking boundary, one oscillator is negatively detuned and
the other positively �in a frame between the two natural fre-
quencies� and so both possibilities can arise near each

boundary: the laser which is positively detuned can undergo
a −2� phase slip and vice versa. As the magnitude of the
detuning is increased, the fixed points for each oscillator
move closer together and so less noise is required to excite a
phase slip.

As the coupling strength is increased, other steady state
solutions appear. The reduced model continues to be physi-
cally relevant to the experiment for relatively low coupling
strengths. The steady states are created in further saddle-
node bifurcations and Fig. 4 shows an example of the stable
and unstable frequency solutions versus the detuning �a case
with few steady states was chosen to keep the figure as
simple as possible�. The solid �blue� lines show the stable
frequencies of the locked states while the dashed �black�
lines show the unstable frequencies. Note that in all but one
solution, the stable and unstable points have different fre-
quencies. Just in one case �the �=0 solution in the figure�
are the frequencies the same and this corresponds to the situ-
ation described above where both solutions are fixed points
in the same frame. Consider the mode with the lowest fre-
quency, for example. In this mode, the unstable frequency is
higher than the stable frequency and thus in the frame where
the stable solution is a fixed point the unstable solution is a
limit cycle of positive frequency. Phase slips generated by
noise close to the boundaries of these modes cannot be sus-
tained. Instead, the system moves to the next frequency so-
lution after a limited number of slips—positive slips for fre-
quencies below the central solution and vice versa. �In laser
parlance, the system undergoes a mode hop.� Why this hap-
pens can be explained as follows. The average frequency of
the field in a mode with frequency �s as it slips is �s�� /�
�with the sign depending on the direction of the slips�. How-
ever, the frequency difference between adjacent modes is
approximately � /�. Thus, the average frequency of the slip-
ping mode is very close to that of the next mode and so one
can intuit that rather than continuing to slip, the slips become
smoothed out and the frequency of the next mode is attained.
This seems to be borne out by simulation. The closer to the
central mode, the more stable is the solution and so typically
the system moves toward the center. Thus, one should not
expect to observe sustained pulses except near the unlocking
boundaries.

Consider now the situation where a slip is excited in one

(b)(a)

FIG. 4. �Color online� The figure on the left shows the stationary
state frequency solutions �s for symmetric coupling with b1=b2

=0.009. The solid �blue� lines are the stable solutions while the
dashed �black� lines are the unstable solutions. The figure on the
right shows the steady state solutions for asymmetric coupling with
b1=0.005 and b2=0.009. The delay time � was taken to be 900 for
these figures.
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of the oscillators �both of which are in the central mode� and
what occurs when this slip reaches the second oscillator. Nu-
merically, it is found that three outcomes are possible: �i� the
phase can change in the same manner; �ii� the phase can
return to the original point without making a full rotation and
�iii� the phase can change in the opposite manner where a
change of +2� in one triggers a change of −2� in the other
and vice versa. For symmetric coupling, the most important
factor in determining which does actually occur is the prox-
imity to the unlocking boundary. For low detuning, the
phases follow each other predominantly while for large de-
tuning the phases change in the opposite direction predomi-
nantly. To explain this, suppose oscillator 2 is undergoing a
phase rotation and let us approximate its phase as �t over the
course of the slip. The phase plots in Fig. 3 show that this is
a reasonable approximation. The equation for �1 then be-
comes

�̇1 =
�

2
− b sin��1 − �t�

�where we omit the noise for ease�. This can be transformed
to the usual Adler form by defining 	=�1−�t. The resulting
equation is

	̇ = �� +
�

2
	 − b sin�	� ,

for which a locked solution exists only if 
�+ �
2 

b. That is,

oscillator 1 can remain locked to oscillator 2 during the ro-
tation only if this condition is satisfied. Thus, for low detun-
ing �1 can rotate with �2 and undergo the same phase
change. However, for large detuning, oscillator 1 cannot re-
main locked to oscillator 2 when the slip arrives. Suppose for
clarity that �2 is increasing during a slip. Then, while un-
locked, �1 will decrease. When �2 returns to its locked po-
sition, �1 will also return to its locked position but how it
does so depends on its value when �2 settles. Once �2 has
resettled, the two fixed points for �1 re-emerge and so de-
pending on its value relative to these it can either return
directly to the locked value or perform a slip of its own.
Thus, both perturbations away from and back to the fixed
point and full rotations can occur closer to the unlocking
boundary. �Very close to the boundary one should observe
each phase slipping but in opposite directions.� Of course,
the rotations are always a multiple of 2� and so the end
states are always physically equivalent. Naturally, a new slip
can be excited by noise in the time between round trip sepa-
rated pulses in the system and this can also propagate
through the system. Likewise, noise can suppress a pulse and
cause it to disappear. In general, a mixture of the different
processes is observed. Two examples of numerical phase
evolutions are shown in Fig. 5 in excellent qualitative agree-
ment with the experimental cases.

In conclusion, we have described a mechanism by which
an excitable response can be regenerated in a phase-coupled
system due to the combination of mutual coupling and delay.
A pair of mutually coupled quantum dot lasers was used to
examine the system experimentally. The phenomenon de-
scribed should be robust to the inclusion of additional oscil-

lators; for networks containing closed loops one should ex-
pect it to be a generic feature. The results confirmed that with
weak coupling the system is an excellent approximation to a
pair of Kuramoto coupled oscillators. While in times less
than a delay time, each laser in the system can be described
as the slave in a master slave configuration, it is the subse-
quent regeneration of the phase slip that provides the differ-
ence over the master-slave system. Of course, a quantum
well laser can also be expected to undergo such a phase slip
and a mutually coupled configuration of quantum well lasers
should be investigated. However, one might expect the re-
sulting dynamics to become chaotic in that case due to both
the requisite short delay times and more weakly damped re-
laxation oscillations. If the relaxation oscillation damping of
a quantum well were to be higher than typical values, then
one would imagine that the observed dynamics would be
possible. The phase measurement works very well for the
situation where the time between successive pulses is long.
However, the technique runs into difficulty as more pulses
appear as the correct beating frequency which must be sub-
tracted is more difficult to ascertain. For the case of injection
experiments, this can be overcome with the phasor technique
described in �30�. Such an alternative would be most wel-
come for the case considered here but as yet none exists. The
modeling also requires further work to incorporate both the
electric field amplitude and carrier density. Qualitatively, one
can expect similar results but some differences will occur.
For example, in the phase model each oscillator is symmetric
in relation to the detuning. This would not be the case in the
full model where phase-amplitude coupling via the linewidth
enhancement factor induces an inherent asymmetry to each
laser. This work suggests that coupled quantum dot lasers
could be of interest in the construction of Kuramoto net-
works and in particular network motifs. Future work could
involve the prospect of using such ensembles to carry out
logical processes and as artificial neural networks. One can
easily envisage the coupling of a number of such devices in
numerous topologies involving all three of feedback, master-
slave and mutual couplings. Finally, a natural extension
would be to introduce external forces to mimic the currents
applied to neurons or to Josephson junctions.
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(b)(a)

FIG. 5. �Color online� Numerical phase evolutions. For the fig-
ure on the left, the parameters were b1=b2=0.09, �=−0.05, �
=2000, D1=0.15, and D2=0.15. For the figure on the right, the
parameters were the same but with �=−0.06.
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